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Parallelizing Locally-Weighted Regression

By
Julia Corbin Fauntleroy
and

Edward J. Wegman

Abstract:

This paper focuses on a nonparametric regression technique known as locally-weighted
regression or LOESS. LOESS is a computationally intensive technique which makes it naturally
amenable to exploiting high performance computers. In this paper, we explore domain
decomposition techniques for LOESS and study the performance of our algorithm on an Intel
Paragon XP/S A4 machine. We study both speedup and efficiency as a function of the number
of nodes. Certain segments of the LOESS computation are shown to be fruitfully parallelized
while others are essentially sequential and cannot be parallelized effectively.
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Introduction

Regression analysis is a statistical methodology used to predict values of one or more
response variables from a group of predictor variables. This methodology results in the following
model

Y = X8+ ¢, with § = X'X)'X'Y
where Y is the response variables, X are the predictor variables, 8 is the vector of regression
coefficients, and € are the error terms. The purpose of regression analysis is to find the estimate of
B that best fit the data. The regression coefficients are selected using a least squares criterion and
referred to as the least squares estimates of §8.[2]

Locally-weighted regression, or loess, is a non-parametric method for fitting a regression
surface using multivariate smoothing. Instead of a single fit over all X, a local neighborhood of size
k is determined for each x, and a weighted-regression model is formed for that neighborhood. This
model is similar to the regression model and can be expressed as

Y =Xg + &, where § = (X™WX)'X™W,Y and

w . .- 0
W2

0 . W

W, is a diagonal matrix of weights where w; is the weight of the jth observation in the
neighborhood of x, The weights are determined so that points closer to x; are weighted more than
those further away from x,. The size of the local neighborhood is a fraction of the total sample size,
n.[3]




To calculate a loess estimate,  regression models must be formed. When the sample size
is small, the algorithm can quickly calculate the fitted value for each data point. When the sample
size becomes large, the number of computations performed requires an extensive amount of
computer time. This paper demonstrates the use of paraliel computing to reduce the time for
computing fitted regression estimates for each data point in large-scale problems.

Constructing a Parallel Algorithm

The code for the local regression routine was obtained from AT&T Bell Labs at
netlib.att.com. It originated from research by William S. Cleveland, Eric Grosse, and Ming-Jen
Shyu and is the loess() routine used by S-Plus, a_statistical software package from StatSci. The
code consists of both C and Fortran subroutines. Only the portion of code for computing exact

regression estimates was used for this project.

The first step towards parallelizing the problem was to examine the code in a purely
sequential setting. The program was split into several sections. As illustrated in Figure 1, each
section represents either sequential processes or candidate processes for parallelization. The
sequential processes handled the setup and cleanup of internal working storage, computation of
residuals, and residual diagnostics. The candidate processes were the computation of the fitted
regression values and the degrees of freedom (or effective number of parameters). These portions
of code perform repetitive computations, require a longer time to compute, and can easily be
translated to a parallel environment. Table 1 shows the breakdown of computation time for the
sequential processing of the complete application using a sample size of 500.

——————
~—— e —

Section of Application Time (in sec.) |
1. Setup of working storage 0.6805
[2. Compute fitted values 4. 13%'
3. Compute degrees of freedom 111.2922
4. Compute residuals, residual diagnostics, cleanup 0.6672

| Total Time _ _116.7703

Table 1: Breakdown of sequential time for 500 data points.

As seen in the table, the largest computation time occurs when the degrees of freedom are
computed. In Figure 2, it also can be seen that the time required for computing the degrees of
freedom increases at a much faster rate than that of computing the fitted values. This is because the




Figure 1: Breakdown of Algorithm
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degrees of freedom computation requires O(n?) calculations. The number of calculations for this
process grows at a rapid rate as » gets large (Figure 3). When this process is parallelized a
significant improvement in the calculation times should be seen as the calculations are spread

across the nodes.

On the other hand, the computation of the fitted values requires a much smaller number of
calculations. This may be surprising since a regression model is being fitted for every data point,
but given the fact that the model is fitting only a small number of points in the local neighborhood,
the number of calculations is of O(n,) where n, is the size of the local neighborhood. This keeps the
computation time small. For purposes of this paper, both the processes will be moved to a parallel
environment. However, the benefit in parallelizing the computation of fitted values will be small.

After the candidate processes were determined, each section of code was examined to
decide the best approach to take in parallelizing the routines. As the outlines show, the data are
processed in a sequential manner in both candidate processes; i.¢. a loop from 1 to ». In addition,
no information from a calculation in one iteration of the loop is required at the next iteration. This

means that the calculations can be performed on separate nodes.

Candidate Process #1 - Compute Fitted Values

The loess estimate for a point x, is computed in the following way.[5]
1. Identify the k-nearest neighbors of x, for ¥ = N*span where the span is percentage of
the data provided by the user.
2. Compute the maximum distance of the k-nearest-neighbors and x,.
3. Compute the weights for the k-nearest-neighbors.
4. Fit the k-nearest-neighbors using weighted least-squares.

Candidate Process #2 - Compute degrees of freedom

Using Hat Matrix (H) compute
1. Hy =1 - H where I is the Identity matrix

2. 8, = tr(H,H,
3. p = 6,%/6, where p is the degrees of freedom [6]

There are several ways to parallelize these algorithms. The calculations for each data point
requires the multiplication of several matrices. The matrix algebra could be vectorized but the time
required for the matrix calculations at each data point is minimal and the communication overhead
for number of calculations required would probably increase the computation time. Since
vectorization is not practical, the best approach would be to distribute the data across the nodes if
the data set is extremely large.
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Implementation of the Algorithm

To determine the computation time of the parallelized routines, five samples of 100, 200,
300, 400, and 500 data points with two parameters were used. These points were generated from
random variables where X ~ N(0,1), X5 ~ E(1),and Y ~ N(0,1). Each sample was processed
across N nodes for N=1,2,..,56. The timings that were collected during the runs were based on
elapsed system time. The candidate processes to be parallelized are the computation of fitted

regression values and the computation of degrees of freedom.

Each candidate process was evaluated to determine the speedup and efficiency due to the
parallelization. The speedup (S) of the program is defined as the ratio of the time it takes for the
application to execute on a single node (T,) and the time it takes for the application to execute over
p nodes (Tp). This says that the ideal time for each node to process is T,/p, which implies that
Sigear=T1/Tp =T, /(Ty/p) =p. The speedup is effected by algorithmic constructs, overhead
created by node initialization and implementation, load balancing, and communication overhead.
The efficiency of the application is determined by the ratio of the speedup to the number of nodes
used; & = S/p.[1] Efficiency describes how well the algorithm was parallelized. The more work a
single processor has to do because of the parallelization, the lower the efficiency.[4] If ideal
speedup is achieved then the efficiency of the application is 1.0. Since the ideal speedup will most
likely not be achieved, there becomes a tradeoff between loss of efficiency and increased
speedup.[1}

Results

As illustrated in Figure 4, the computation of fitted values showed some improvement as
the number of nodes increased but after the addition of more than four nodes, the speedup of the
process began to decline. Eventually, running the process across a large number of nodes resulted
in worse times than running it on a single node. It is suspected that the communication overhead is
having an effect on the computation time. It is interesting to note that as the sample size increases
the speedup decreases over all nodes. This indicates that this process has better performance in a

sequential environment.

On the other hand, the computation of the degrees of freedom showed a dramatic had a
dramatic improvement in speedup, as seen in Figure 5. But like the first process, the speedup

begins to drop off as the number of nodes increases past some maximum speedup value. As the
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figure also shows, when the sample size increases, the number of nodes required for the maximum

speedup also increases.

While the speedup of the process has been greatly improved, at no time does it reach its
ideal value. Since the code was not optimized for a parallel environment, there is probably some
overhead in the software that effects the speedup. In addition, there is certain to be communication

overhead as the number of nodes increases.

In the first approach at parallelizing the second algorithm, the times seemed to have a lot
of noise in them as the number of nodes increased. After examining the data it became apparent
that high speedup values occurred when the data was evenly distributed across the nodes. Low
speedup values occurred, when n- Ln/ip] # 0. A review of the code, pointed to a load balancing
problem. The distribution of data to the nodes was changed so that a node received either Lnip] or

|#/p] + 1 data points. This lessened the impact that load balance had on speedup. The results of

this modification can be seen in Figure 6.

If we look at efficiency, in Figures 7 & 8, it is easily seen that efficiency drops off fairly
quickly when more nodes are added. However, as the sample size increases, the efficiency tends to
increase overall the nodes. This means that while we do get a significant speedup using a large
number of nodes, the algorithm is not performing as well as expected in the parallel environment.
The algorithm was not optimized for parallelization and this may have an impact on the efficiency.
Figure 9 illustrates the interaction of efficiency and speedup. The point where the efficiency begins
to fall below the speedup is where the interaction of the system starts to have an effect on speedup.
This effect may be a result of how the algorithm is processed by the node, the quantity of data
passed, or some other system dependent factor.[4] An interesting phenonmenon occurs when
comparing the crossover points of each sample size (see Figure 10). The points where speedup and
efficiency lines cross for each sample size appear at exactly the same node for each sample size.
This indicates that there is some system interaction with the algorithm that is not data dependent.
Additional research is required to determine the cause of this system interaction.

Conclusions

The results of this study show that parallelizing the computation of the degrees of freedom
significantly improves the performance of the application for large sample sizes. The computation
of the fitted regression values has little if any improvement and should probably be left as a
sequential process. This problem was a good example for showing that the distribution of the
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computations across the nodes can effectively reduce the amount of computation time. In addition,
it demonstrated the impact of load balancing on the speedup and efficiency of an application. A
maximum speedup value occurs at a particular number of nodes used. Futhermore, an increase in
the number of nodes may not always improve the performance of the application. While the
samples sizes used in the study were relatively small, the increase in speedup over the selected
sample sizes seems to indicate that for sample sizes of 1000 or 10000 there will still be a
significant increase in the speedup of the computations.




References

[1] Fox, G., et. al. , Solving Problems on Concurrent Processors, Vol 1. General Techniques and
Regular Problems, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[2] Johnson, Richard A. and Wichern, Dean W.,Applied Multivariate Statistical Analysis, Prentice
Hall, Englewood Cliffs, NJ, 1988.

[3] Scott, David W., Multivariate Density Estimation: Theory, Practice, and Visualization, John
Wiley & Sons, Inc., New York, 1992.

[4] Private Communications with Eric Harder, May 1994.

[5] Hastie, T.J. and R J. Tibshirani, Generalized Additive Models, Chapman and Hall, New York,
1990.

[C] Cleveland, William S., Eric Grosse, and William M. Shyu, "Local Regression Models”,
Statistical Models in S, Chambers, John M. and Trevor J. Hastie eds. Wadsworth & Brooks/Cole,
Pacific Grove, California, 1992, pp 309-376.



MASLER LUPY Keby ilhils CUPY ruk REPRODUCTION PURPOSES

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information 1s estimated to average 1 hour per response, inctuding the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. 10 Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jefterson
Davis Highway, Sutte 1204, Arlington, VA 22202-4302, and 10 the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October, 1994 Technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Parallelizing Locally-Weighted Regression DAAL(O3-91-G-0039

6. AUTHOR(S) DAAHO4-94-G-0267

Julia Corbin Fauntleroy and Edward J. Wegman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Center for Computational Statistics TR No. 102

MS 4A7

George Mason University
Fairfax, VA 22030-4444

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U.S. Army Research Office
P.0O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This paper focuses on a nonparametric regression technique known as locally-
weighted regression or LOESS. LOESS is a computationally intensive technique Wwhich
makes it naturally amenable to exploitinghigh performance computers. In this paper,
we explore domain decompésition techniquesfor LOESS and study the performance of our
algorithm on an Intel Paragon XP/S A4 machine.. We study both speedup and efficiency
as a function of the number of nodes. Certain segmants of the LOESS computation are
shown to be fruitfully parallelized while others are essentially sequential and
cannot be parallelized effectively.

14. SUBJECT TERMS 15. NUMBER OF PAGES
LOESS, nonparametric regression, speedup, efficiency 18
load balancing. 16. PRICE CODE
17. SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 {(Rev 2-89)

Prescnibed by ANSI Std Z739-18
298-102




KEEP THIS COPY FOR REPRODUCTION PURPOSES

Form Approved
OMB No. 0704-0188

MASTER COPY

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of intormation 1s estimated 10 Average ! hour per responrse. including the time 10r reviewing INstructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information Send comments regarding this burden estimate Or any dther aspect of thy
coliection of intarmation, inctuding suggestions 1or reducing this burden 10 Washington Headquarters Services, Directorate for intarmation Operations and Reports, 1219 Jeftersor
Davis Mighway, Suite 1204, Arlington. VA 22202-4302 and to the Otfice of Management and Budget Paperwork Reduction Project (0704-0188). Washington, OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October, 1994 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Parallelizing Locally-Weighted Regression N0O0014-92-J-1303

6. AUTHOR(S) N0OO014-93-I-0527

Julia Corbin Fauntleroy and Edward J. Wegman

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR No. 102

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Computational Statistics
MS 4A7

George Mason University

Fairfax, VA 22030-4444

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Begartment of the Nav¥
Office of the Chief of Naval Research

Mathematical Sciences Division
800 N. Quincy Street Code 1111SP

Arlington, VA 22217-5000
11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Navy
position, policy, or decision, unless so designated by other documentation.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This paper focuses on a nonparametric regression technique known as locally-weighted
regression or LOESS. LOESS is a computationally intensive technique which makes it
naturally amenable to exploiting high performance computers. In this paper, we
explore domain decomposition techniques for LOESS and study the performance of our
algorithm on an Intel Paragon XP/S A4 machine. We study both speedup and efficiency
as a function of thenumber of nodes. Certain segments of the LOESS computation are
shown to be fruitfully parallelized while others are essentially sequential and cannot
be parallelized effectively. :

g

»

15. NUMBER OF PAGES

18
16. PRICE CODE

14. SUBJECT TERMS

LOESS, nonparametric regression, speedup, efficiency, load
balancing

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL ®

NSN 7540-01-280-5500

Standard form 298 (Rev 2-89)
Pve}(‘v_it‘)od by ANSH Std 239.138



